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Abstract—Static signatures originate as handwritten images on documents and by definition do not contain any dynamic information.

This lack of information makes static signature verification systems significantly less reliable than their dynamic counterparts. This

study involves extracting dynamic information from static images, specifically the pen trajectory while the signature was created. We

assume that a dynamic version of the static image is available (typically obtained during an earlier registration process). We then

derive a hidden Markov model from the static image and match it to the dynamic version of the image. This match results in the

estimated pen trajectory of the static image.

Index Terms—Pattern recognition, document and text processing, document analysis, handwriting analysis.
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1 INTRODUCTION

PRODUCING cursive writing or handwritten signatures on
documents involves a dynamic process—the pen posi-

tion, pressure, tilt, and angle are functions of time. The end
result, however, is a static image with little, if any, dynamic
information encoded in it. Dynamic information, on the other
hand, is particularly useful for automatic handwritten
character or word recognition or for the verification of
signatures [1]. Thus, extracting dynamic information from
statichandwritten imagescanhaveusefulapplications. In this
paper,we study the problemof extracting the pen trajectories
that created a static signature, i.e., the paths that the pen
followed over the document. Thus, the problem is to unravel
the script and present it as a collection of parametric curves.

There are several difficulties to overcomewhen recovering
the pen trajectory from a static handwritten script. The first
one is to find the starting position. It is often hidden inside the
image (especially where signatures are considered) and not
visible at all. Due to this ambiguity, strict constraints are
normally required to decide where the pen trajectory starts:
Typically, it is assumed that the pen trajectorymust start and
terminate at distinct positions [2], [3], [4]. Thus, characters
such as “0,” cannot be successfully unraveled.

A second and more serious problem arises from regions
containing multiple self-intersections. Signatures often have
complicatedregionsconsistingofmanyintersections,making
it hard to track a particular path through those regions. One
possibility is to assume that the direction of a line is
maintained when entering and leaving an intersection. A
choice between the different possibilities at the intersection is
then typically based on some local smoothness criteria, as in

[5], [6], [7], [8], [9], [10].Thisapproach is,however, insufficient
to completely resolve ambiguities. If the script becomes
indistinctduetoalargenumberof intersections inasmallarea,
local information is not sufficient to find the correct path, and
additional assumptions may be necessary; for example,
restricting the number of lines that can cross at an intersection
[2], [3]. Local methods struggle to take context into account
and several studies therefore include global information by
modeling the pen trajectory estimation problem as a graph-
theoretical problem [11], [12], [13], [14], [3], [15], [16], [17].

All the studies mentioned above use only the 2D image
of the script. Another approach is to use dynamic exemplars
of the static image captured with a digitizing tablet at the
time of registration [18], [19]. The idea is to compare a given
static image with prerecorded dynamic exemplars. It is
important to note that the static image is compared with
generic dynamic representatives, and not a dynamic copy of
itself. The additional information from the exemplars is
exploited to partially resolve ambiguities in regions of
multiple crossings. Some heuristic measures might still be
required to resolve the ambiguities completely.

A dynamic exemplar is also valuable in resolving a third
difficulty, namely, identifying turning points, where the pen
stops, and then reversesdirection. It shouldbe clear that static
signatures retain no information about the return portion of a
pen trajectory that stops and then reverses direction,
returning along the samepath. Somestudies therefore restrict
the number of times the pen can revisit a line [2], [3].

Another major difficulty one has to address is discon-
nected trajectories, produced when the pen is lifted. This
particular problem falls outside the scope of this paper, but,
in the final section, we briefly outline the approach we are
pursuing at present.

In this study, we consider only singlepath handwritten
scripts, i.e., scripts that consist of a single curve created with
uninterrupted, nonzero pressure. We make use of prere-
corded dynamic exemplars of the static image. As alluded to
above, ours is not the only approachassuming the availability
of dynamic exemplars. Guo et al. [18], for example, locally
compare the static and dynamic pen positions and line
directions. Since a local approach does not take the global
context into account, theirmethod relies heavily on heuristics
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to resolve ambiguities; for example, the smoothest pen
trajectory is chosen at an intersection. Lau et al. [19] use a
statistical approach. They derive and train four probability
density functions (PDFs) for each signatory fromprerecorded
dynamic scripts. The skeleton of a static image is matched to
these PDFs using a dynamic programming algorithm. The
path with maximum likelihood is then extracted from the
static image.

Our approach constructs a Hidden Markov Model
(HMM) from the static image. An HMM is a probabilistic
model that models a time-dependent sequence of events
with a sequence of states having transitions between them
[20]. In our case, the HMM describes the pen trajectory that
created the image. Each state has an associated PDF,
embedding geometric shape information of the static image.
The HMM topology specifies the interconnection of states.
Transitions between states are weighted with transition
probabilities to dictate possible pen movements between
static image coordinates. Normally, both the state PDFs and
the transition probabilities are obtained through a training
process. Although training is possible for this application as
well, data scarceness is a serious problem and we chose to
specify the PDFs and transition probabilities in advance.

The next step is to compare the constructed HMM with
prerecorded dynamic exemplars of the image. This is done
using theViterbi algorithm [20]. Since theViterbi algorithm is
a global optimization algorithm, it is particularly useful for
resolving local ambiguities due to multiple intersections. It
should also be noted that the initial transition probabilities
allow the estimated pen trajectory to start at any position,
resolving the problem of the starting point. Turning points
are dealt with by specifying appropriate transition probabil-
ities and no restrictive assumptions are needed.

A basic first-order HMM is constructed from a static
image, as described in Section 3. However, it is not able to
completely resolve ambiguities in regions with multiple
intersections. The problem is due to a loss of context caused
by the use of first-order HMMs: transition probabilities
depend only on the current state. Higher-order HMMs,
whose transition probabilities depend not only on the
current state but also on the previous states, are much better
equipped to take context into account. Usually, higher-
order HMMs tend to be computationally expensive. In this
study, however, we use a second-order HMM with sparse
transition probability matrices, reducing the computational
cost to a manageable level. The suitable second-order HMM
that is derived from a basic first-order HMM is described in
Section 3.3. Further, context is provided by comparing not
only pen positions but also local line directions.

The rest of this paper is organized as follows: Section 2
describes the primary preprocessing steps required to apply
our method successfully. Section 3 presents our pen
trajectory estimation technique. Section 4 presents a
procedure for evaluating our technique and reports experi-
mental results. Section 5 draws some conclusions.

2 PREPROCESSING STEPS

A recorded dynamic exemplar is interpolated using a cubic
spline and parameterized so that any two successive points
are approximately onepixel apart. Subsequent preprocessing
is simple, consisting of resizing and translation, thinning, and
orientationnormalization. The static image is skeletonized, as

described in Section 2.1. The orientations of the static image
and the dynamic exemplar are then aligned using the Radon
transform, as discussed in Section 2.2.

2.1 Skeletonization

In order to extract a parametric curve from a static image,
we first extract a skeleton from the image through a thinning
process, where the skeleton coincides mostly with the
centerline of the original image. Standard skeletonization
techniques which do not remove noise or artifacts can be
found in [21], [22], [23], [24].

Since we are attempting to extract the pen trajectory from
the image, artifacts introduced by thinning algorithms can
have anegative impact onour trajectory extraction algorithm.
We have therefore implemented the rather sophisticated
algorithm of Zou and Yan [25], as improved by Rocha [26],
with a few important modifications specific to our applica-
tion. The algorithmof Zou andYan first determines the edges
within theoriginal image.ByconstructingDelaunay triangles
[27] from control points representing these edges, one
computes a skeleton that follows the centerline of the image.
Additionally, one identifies the triangles that contribute to
artifacts, resulting in a powerful technique to identify and
remove skeletonization artifacts.

The most important modification for our application
involves the skeletonization in complicated regions. The
algorithms by Zou, Yan, and Rocha assume that lines do not
change their orientation after entering an intersection. Due to
thenatureofhumanhandwriting,especiallysignatures, this is
not always true. When an image becomes indistinct due to
multiplecrossings inasmall region, it isnotclearwhichcurves
shouldbecombined. If theskeletonizationalgorithmfollowsa
dominant curve and strives to maintain its direction, the
wrong curves may be connected, with the result that actual
trajectories become irretrievably lost. In situations like these,
we are careful to maintain all possible connections, while
smoothing transitions at intersections as much as possible.
This often results in a visually unappealingweb of connected
lines (see Fig. 1c). Although visually unappealing, thesewebs
of connected linesarenotaproblemforourproposedmethod.
The HMM is able to find the appropriate connections and
thereby reconstructs the pen trajectory accurately.
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Fig. 1. (a) A binarized signature that is difficult to unravel. (b) Examples

of artifacts that can occur in skeletons. (c) The final skeleton of (a),

specific to our application (note the web-like structures). (d) Examples of

trajectories that can be extracted from (c).



Fig. 1a shows an example of a reasonably difficult
signature to skeletonize: one that even the eye finds difficult
to unravel. Fig. 1b is its skeleton as produced by the well-
established thinning algorithm described in [24]. Some, but
not all, artifacts are encircled with dotted lines. The
modified Zou, Yan, and Rocha procedure is illustrated in
Fig. 1c. Examples of trajectories that can be extracted from
Fig. 1c are shown in Fig. 1d, illustrating how the web-like
structures smooth transitions between intersections in
complicated regions. The transitions are considerably
smoother than those in Fig. 1b.

Finally, we note that our pen trajectory estimation
algorithm is not particularly sensitive to a specific skeleto-
nization scheme. The Zou, Yan, and Rocha scheme yields a
2.2 percent improvement in accuracy over the basic
thinning algorithm described in [24]. A detailed discussion
of these results can be found in Section 4.

2.2 Orientation Normalization

Any form of handwriting is generated in a specific overall or
average direction relative to the horizontal axis, which we
refer to as the orientation of the handwriting. Since our
algorithm relies on local line directions, it is important that
the static image and the dynamic exemplar have the same
orientation.

Principal component analysis (PCA) is frequently used
to align different shapes [22], [5], [28]. Unfortunately, this
simple procedure is not reliable for signatures. Problems are
encountered with shapes that do not display a clear
“direction,” i.e., where the two principal values are
approximately the same, as illustrated in Fig. 2a. The
depicted dynamic signatures are rotated so that their
principal axes (dashed lines) are aligned with the x-axis. It
should be noted how the principal axes differ for the six
different signatures of the same person.

A more robust approach is provided by shape matching
algorithms in the Radon andHough domains [29], [30]. Since
a rotation of an image corresponds to a linear shift of the
Radon and Hough transforms (see, for example, [31]), it is
straightforward to calculate the optimal match. It should be
noted that the Radon andHough transforms can also be used
todetect straight lines inan image.Theestimatedequationsof
the straight lines enable one to detect italic (slanted) hand-
written characters or to determine the general orientation of a
document (document skew); see, for example, [32], [33].

In order to compare a static image skeletonwith adynamic
exemplar, the dynamic exemplar is translated until their
centroids are aligned. The dynamic exemplar is then
converted into a static image. Since the Radon transform is
sensitive to the line width of the images, we thicken [22] the
static image skeleton as well as the image derived from the
dynamic exemplar to a line width of approximately five
pixels. The two images are then matched, using a method

very similar to the one described in [29], which is based on
Euclidean distance measures in the Radon domain. The
relative angle of the optimal match is calculated, and the
dynamic exemplar is rotated through this angle to align it
with the static image skeleton. This procedure is illustrated in
Fig. 2b, where all the signatures are aligned with the
orientation of the first signature.

3 ESTIMATING THE PEN TRAJECTORY

The technique we develop for extracting the pen trajectory
from a static, normalized image is based on an HMM. An
HMM is a probabilistic model describing a dynamic process
that evolves from one state to the next. In our application,
the sequence of states describes the sequence of pen
positions as the image is produced. An HMM is constructed
from the static image skeleton. Using the HMM, the
dynamic exemplar is matched to the static image. The
matching algorithm results in the most likely pen trajectory
of the static skeleton, given the model. In addition to the
pen trajectory, one also obtains a quantitative correspon-
dence between the static image and dynamic exemplar.

We explain themain ideas bymeans of the simple example
shown in Fig. 3a. The image is skeletonized, as described
earlier. Since the order of skeleton samples is unknown, a
typical numbering is shown in Fig. 3b. Fig. 3c shows a
dynamic exemplar that must be matched to the static image.
Note the shape differences between the two. Possible pen
trajectories must be estimated from Fig. 3b and compared
with the known sequence of Fig. 3c. Sincewedo not know the
optimal sequence in Fig. 3b, or even the startingpoint, for that
matter, a very large number of possible sequences need to be
compared—far toomany for an exhaustive search. The use of
an HMM, however, makes the calculation of the optimal pen
trajectory computationally feasible.

To estimate the pen trajectory of the static image, two
basic issues are addressed. First, a probabilistic model of the
static signature is created. More specifically, an HMM is
created which describes the geometric shape of the
signature and restricts the choice of possible pen move-
ments. Second, the optimal pen trajectory is calculated by
matching the known dynamic exemplar to the HMM.

3.1 The HMM

An HMM has N emitting states fq1; q2; . . . ; qNg that have
observation PDFs associated with them. The two states q0
and qNþ1, without associated PDFs, are called nonemitting
states. These two additional nonemitting states serve as
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Fig. 2. Aligning signatures with (a) PCA and (b) the Radon transform.

Fig. 3. (a) A straightforward singlepath static signature, with (b) its

unordered skeleton samples and (c) a dynamic signature that can be

used to extract the pen trajectory of (b).



initial and terminating states, respectively, thus eliminating
the need for separate initial and terminating probabilities
(see [34] for more detail).

All state observation PDFs in the context of this paper are
spherical Gaussians, described by

fðxÞ ¼ 1

ð2�Þ
D
2�

exp � 1

2�2
ðx� ����ÞT ðx� ����Þ

� �
; ð1Þ

where x is a D-dimensional vector that must be matched to
the PDF and ���� is the D-dimensional mean of the Gaussian.
The standard deviation � is preset. For brevity, the PDF
associated with state i having mean ����i and standard
deviation � will be referred to as Nð����i; �Þ. Geometric shape
information of the static image is embedded in the PDF
parameters ����i and �, as described in Section 3.2.

States are connected by transition links that dictate the
possible pen movements. All transitions between states are
weightedwith transition probabilities. The order of theHMM
specifies the number of previous states the HMM considers
when transiting to a next state. Sections 3.2-3.6 describe how
the order of our HMM is increased to take context into
account. In order to match a static image and a dynamic
exemplar, thedynamicexemplar ispresentedasa sequenceof
quantifiable characteristics called feature vectors. The se-
quence is given by XXXX ¼ ½x1;x2; . . . ;xT �, where xt denotes a
D-dimensional featurevector atdiscrete-time instant tandT is
the number of feature vectors (number of samples in the
dynamic exemplar). Using the Viterbi algorithm, XXXX is
matched to our HMM to produce a hidden state sequence
s ¼ ½s1; s2; . . . ; sT �, which estimates the desired sequence of
skeleton samples, as described in Section 3.7.

3.2 A First-Order HMM

The shorthand notation for an HMM � is

� ¼ fAAAA; fN ð����i; �Þ; i ¼ 1; . . . ; Ngg; ð2Þ

where AAAA is a matrix representing the transition links and
Nð����i; �Þ, as described by (1), is the observation PDF of state i
for i 2 f1; . . . ; Ng.

We begin by constructing a first-order HMM from the
skeleton of the static image. The skeleton consists of
M unordered samples fp1;p2; . . . ;pMg, where px is the
2D coordinate of sample x. Each emitting state i is associated
with a skeleton sample via a mapping rðiÞ and the sample
coordinates are embedded in the observation PDF by setting
����i ¼ prðiÞ. For a first-order HMM, we have N ¼ M and
rðiÞ ¼ i. Our first-order HMM matches only 2D feature
vectors, in this case, the pen positions of the dynamic
exemplar. We choose � ¼ 0:7 pixels in (2) for all states, in
order to relate the match between the position coordinates of
thedynamic exemplar and static image toEuclideandistance.

The HMM topology is crucial to our algorithm, as it
constrains the range of possible pen movements that could
generate the static image. For our first-order HMM, the
probability of reaching the next state depends only on the
current state, so that the transition probability matrix
AAAA ¼ ½aij�, where aij ¼ P ðstþ1 ¼ qjjst ¼ qiÞ is the probability
of a transition from qi to qj at instance tþ 1, with i; j 2
f0; 1; . . . ; N þ 1g and t 2 f1; 2; . . . ; T � 1g. HMM states are
called neighbors if their associated skeleton samples are
adjacent. All emitting states are linked to their neighbors, to
allow the pen to move to an adjacent skeleton point on a

transition. However, this only takes local information into
account, and not context. Context is incorporated by using
second-order HMMs, which allow us to include a direc-
tional feature, as described in Section 3.3.

Since we have no prior knowledge of where the pen
trajectory of the static image may start or end, the
nonemitting initial state can enter any emitting state. Also,
each emitting state is directly connected to the nonemitting
terminating state.

One also needs elasticity in the model, to allow the static
image and dynamic exemplar to have different numbers of
samples. This is accomplished by including skip-links and
self-loops in theHMM.A skip-link is a transition between two
states separated by a neighbor common to both. A self-loop
connects a state back to itself. Self-loops are added to the
emitting states. In this paper, we use skip-links to skip states
with only two neighbors. Equal transition probabilities are
assigned to all transition links leaving a state, normalized to
sum to one.

These ideas are illustrated in Fig. 4. The first-order HMM
for the isolated fragment in Fig. 4a is shown in Fig. 4b, where
the three states indicated by the larger circles are emitting
states. Each state is labeled with a pair of numbers: The top
number is the state index i and the bottom number is the
index rðiÞ of its associated skeleton sample. The dashed lines
indicate transition links to and from states outside the
rectangular box in Fig. 4a. The smaller blank circles indicate
the nonemitting initial and terminating states. All states are
connected to these nonemitting states so that the pen
trajectory can start and end at any skeleton sample. Skip-
link 31 and self-loop 33 are also indicated. State 1 and its
neighbors have twoneighbors. Thus, State 1 has six transition
links leaving it: two to its neighbors, two skip-links, one self-
loop, and one to the nonemitting terminating state. The
associated six transition probabilities are therefore all
specified as 1

6 .
We emphasize an important feature of Fig. 4b. Any two

neighboring emitting states and any two emitting states
connected by a skip-link are connected both ways: If one
enters the HMM at an emitting state with more than one
neighbor it is not possible to determine locally in which
direction one should move next and, therefore, both direc-
tions are allowed. Since all transition links are assigned the
same probability, all skeleton samples are potential turning
points. It is therefore entirely possible and it indeed happens,
in practice, that the extracted pen trajectory may incorrectly
reverse direction. One way to address this problem is to
includemore context. Bengio and Frasconi [35], supported by
the experiments ofAbou-Moustafa et al. [36], investigated the
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Fig. 4. (a) Isolated unordered skeleton samples in a simplified signature
and (b) their corresponding first-order HMM.



effect of topology on the ability of an HMM to learn context.
They showed that the addition of hidden states with a sparse
connectivity can increase the ability of a Markov model to
learn long-term dependencies and reduce the diffusion of
context. The topology of our first-order HMM is ergodic with
a sparse connectivity. When using second-order HMMs, we
include extra states and the connectivity becomes even
sparser in a natural way, as discussed in the next section.
Thus, in accordance with Bengio and Frasconi, we improve
the ability of the HMM to model context.

3.3 Second-Order HMMs and Their First-Order
Equivalents

In order to take past context into account, we use second-
order HMMs. We have shown that the transition probabil-
ities of first-order HMMs only depend on the current state,
so that aij ¼ P ðstþ1 ¼ qjjst ¼ qiÞ. The transition probabilities
of second-order HMMs depend on the current and previous
states. The probability of a transition from state j to state k,
given that state j is preceded by state i, becomes
aijk ¼ P ðstþ1 ¼ qkjst�1 ¼ qi; st ¼ qjÞ. Second-order HMMs
can then be reduced to first-order equivalents to simplify
their implementation, by using the Order Reducing (ORED)
algorithm [34], [37].

These ideas are illustrated in Fig. 5. The HMM fragment
in the figure forms part of a larger HMM. We only consider
the transitions between the visible states.

The second-order HMM in Fig. 5b is formed by
extending all transitions of the first-order HMM in Fig. 5a
to second-order connections (the order of the transitions is
encoded in the subscripts of the transition probabilities). We
do not show second-order connections depending on states
outside of the HMM fragment shown.

The basic idea behind the ORED algorithm is to reduce an
Rth-orderHMMto its ðR� 1Þth-order equivalent, by creating
states for all pairs of connected states in theRth-orderHMM.
Applying this procedure recursively, we reduce an HMM of
arbitrary order to its first-order equivalent [34], [37]. The first-
order equivalent of the second-order HMM of Fig. 5b is
shown in Fig. 5c. It should be noted that new first-order
transition probabilities are created from the second-order
probabilities. Bottomnumbers, in general, now label the state
PDFs which in our application translate to the skeleton
indexes inherited from the first-order model. States k and m
(top numbers), for example, are created in Fig. 5c from the
connected pairs jk and km in Fig. 5b, with the same PDFs
(bottom numbers) as states k and m. They are connected by
a0km ¼ ajkm, so that one can interpret ajkm as a first-order
transition probability. In general, M different pairs
of connected states in the Rth-order model result in

approximately M states in the ðR� 1Þth-order model. The
pairs kk, jk, ik, ij, km, and xi in Fig. 5b, for example, are
connected and become states n, k, o, j, m, and i in Fig. 5c,
respectively, where x can be any state connected to i via a
dashed line.

The order reduction significantly increases the number of
states. An Rth-order model with N states reduces to an
equivalent first-order model with OðNRÞ states. However, it
should be noted that this expansion does not increase the
number of freeparameters.TiedPDFs,which arePDFs shared
by more than one state, are evaluated only once and only the
original number of transition probabilities need to be
considered. Therefore, the ORED algorithm does not affect
processing requirements. It is shown by [38] that memory
requirements are not affected either. Computational cost
depends on transition probabilities, as discussed in the final
section. The computational cost of our proposed algorithm is
manageable, as our transition probability matrix remains
sparse. This avoids redundant calculations. In the following
sections, we show how to use the flexibility of higher-order
HMMs to model handwritten scripts, starting with line
segments. All second-order HMMs will hereafter be repre-
sented by their first-order equivalents, without loss of
generality.

3.4 Second-Order HMM Topology for Line
Segments

When unraveling a static image, the simplest parts are those
without crossings or turning points, referred to as line
segments. Line segments consist of connected skeleton
samples referred to as segment points. A segment point is a
skeleton sample having only two skeleton neighbors.

For first-order HMMs, it is necessary to have transition
links connecting the neighboring states in both directions
since the direction of travel on a line segment is not
initially available. This creates the problem that the
direction can reverse at any segment point. We solve this
by extending the first-order HMM of Section 3.2 to a
second-order HMM, as described in Section 3.3. This
introduces longer state dependencies, which enables the
use of directional constraints.

Fig. 6a shows a simplifiedversion of a first-orderHMMfor
a line segment (skip-links, nonemitting states, and transition
links connected to the nonemitting states are omitted). The
skip-links are added in Fig. 6b. One can nowdevelop second-
order HMMs for the topologies of Figs. 6a and 6b, as
described in the previous section. The first-order equivalents
of these second-order systems are shown in Figs. 6c and 6d,
respectively. It should be noted that while the first-order
HMM has just as many emitting states as skeleton samples,
the second-order model has more than one state per sample

NEL ET AL.: ESTIMATING THE PEN TRAJECTORIES OF STATIC SIGNATURES USING HIDDEN MARKOV MODELS 1737

Fig. 5. (a) A first-order HMM expanded to (b) a second-order HMM, and (c) the first-order equivalent of (b).



(i.e., N > M), which represents different contexts in which
the sample can be found. It is alsoworthnoting the significant
increase in model complexity in the right-hand column, due
to the skip-links added in Fig. 6b.

The next step is to enforce pen movement in one
direction. Let �hij be the angle between the two straight
lines connecting points h to i and i to j, respectively. Then,

cosð�hijÞ ¼
ðpj � piÞ � ðpi � phÞ
kpj � pik kpi � phk

; ð3Þ

where k � k is the Euclidean distance norm and ph, pi, and pj

are the2Dcoordinatesofpointsh, i, and j, respectively.Let the

predecessor qh of qi be any state for which ahi > 0. Our second-

order HMM guarantees that all predecessors of an emitting
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Fig. 6. The simplified HMM topology for a line segment in the left-hand column with a detailed version in the right-hand column when skip-links are
added to our first-order HMM. (a) and (b) First-order HMMs. (c) and (d) Second-order HMMs. (e) and (f) Assigning the cost function. (g) and
(h) Removal of self-loop states. (i) and (j) Inclusion of duration states.



state share the sameskeleton sample, byvirtueof its topology.
For example, if there are two emitting states qg and qh that
enter qi so that ahi > 0 and agi > 0, our second-order HMM
topology guarantees that prðgÞ ¼ prðhÞ. In order to encourage
the system to follow the same direction along a line segment,
the probability of a transition from state i, with predecessor
state h, to emitting state j is chosen as the cost function

aij ¼
cosð�rðhÞrðiÞrðjÞÞ; for j�rðhÞrðiÞrðjÞj � 90� ð4aÞ
0; forj�rðhÞrðiÞrðjÞj > 90� ð4bÞ;

(

where cosð�rðhÞrðiÞrðjÞÞ is defined by (3). This does not apply to
links entering or leaving self-loop states, where self-loop states
are stateswith self-loops, e.g., State 7 in Fig. 6d. Figs. 6e and 6f
show the HMMs in Figs. 6c and 6d after links with zero
probabilityhavebeen removed,basedon thecost function (4).

Since the self-loop states are excluded from the cost
function, it is still possible to turn around via them. An
example from Fig. 6e is the state sequence (top numbers)
½4; 5; 8; 1�, which corresponds to the sample sequence (bottom
numbers) ½1; 2; 2; 1�. In order to prevent this, self-loop states
and all their connections (both entering and leaving them) are
removed. Figs. 6g and 6h show the HMMs in Figs. 6e and 6f
after this step.

Introducing skip-links for more elasticity leads to the
configuration of Fig. 6h.We use the term skip-link stateswhen
referring to states in the second-order HMM that result from
skip-links in thecorresponding first-orderHMM,e.g., State10
in Fig. 6d (top number), which results from the skip-link
leaving State 3 and entering State 1 in Fig. 6b. Skip-link states
can compensate for situations in which the static image has
more samples than thedynamic exemplar. Self-loop states, on
the other hand, can compensate for situations in which the
dynamic exemplar has more samples than the static image.
Since all self-loop stateshavebeen removedall emitting states
are duplicated and each emitting state is allowed to enter its
duplicated state. We refer to the duplicated states as duration
states. These duration states have the samedestinations as the
states theyduplicateas illustrated inFigs. 6iand6j. States7-12,
for example, are the duplicated states of States 1-6 in Figs. 6g
and 6h and, therefore, share the same skeleton samples
(bottom numbers) and destinations of states they duplicate.
Finally, it should be noted how the two directions that a pen
can follow on a line segment are completely disjoint within
the HMM, so that it is not possible to change direction in the
middle of a line segment.

In this section, we discussed the topology of states
associated with segment points. Specific transition weights
will beprovided at the endof Section 3.6.Next,wediscuss the
topology at states where the pen is allowed to change
direction abruptly.

3.5 HMM Topology for Crosspoints and Endpoints

To enable the pen to immediately recross a line or suddenly
change direction, we allow it to turn around or change
direction abruptly at states associated with endpoints and
crosspoints. We define endpoints as skeleton samples having
one neighbor. Crosspoints are skeleton samples having more
than than two neighbors. The main difference between
states associated with segment points and states associated
with crosspoints and endpoints is that the direction
constraint of (4) is not enforced for crosspoint and endpoint
states. Instead, traversal to any immediate or skip-link state

neighbor is allowed from a state associated with a cross-
point or endpoint. This ensures that it is possible to change
direction abruptly, or even to turn around, at these states.

Some situations, however, involve simple crossings,
where it is easy to follow line directions that enter and leave
the crosspoint. It is straightforward tounravel such crossings.
If the line thickness is uniform and line directions are smooth
near such a simple crosspoint and no more than two lines
cross each other at a single point, it is unlikely that the penhas
passed through that region multiple times. Let us, for the
moment, assume that we identify such a simple crossing and
label its associated sample as i. A simplified first-ordermodel
(excluding nonemitting states, skip-links, and self-loops) is
shown in Fig. 7a, where i ¼ 4. It should be noted that first-
order HMMs are not able to model past context so that the
transition probabilities for state i have to allow access to any
of the four neighboring states.

The situation is different with second-order HMMs. Its
first-order equivalent is shown in Fig. 7b. As the transition
probabilities also depend on the previous state, which has a
uniqueassociatedsamplepoint, it is straightforward to follow
lines through the crosspoint. At a simple crossing, one can
thendetach the two lines that cross, by setting the appropriate
transition probabilities to zero, as shown in Fig. 7c. To do this,
however,weneed tobeable to identify such simple crossings.

With the crosspoint labeled as i, we label the four
neighboring coordinates clockwise, in order, as a, b, c, and
d. The idea is to identify whether the sequenced samples
fa; i; cg and fb; i; dg are intersecting lines. In Fig. 7b, for
instance, the coordinates (bottom numbers) are labeled as
a ¼ 7, b ¼ 10, c ¼ 11, and d ¼ 9. We consider only crossings
where a, b, c, and d are all segment points, having only one
other skeleton neighbor besides i. Let x be the other skeleton
neighbor of a and y be the other skeleton neighbor of c. We
now calculate three angles, �xai, �aic, and �icy, using (3). If
j�aicj � 10�, j�xaij � 30�, and j�icyj � 30�, fa; i; cg is considered
a straight line. If, likewise fb; i; dg also proves to be a straight
line, the crossing is considered a simple crossing. The second-
order HMM provides the necessary context to extract
directions and decouple the two lines fa; i; cg and fb; i; dg so
that the two intersecting lines can both be traversed in one
direction or the other. Direction is now maintained through
the crossing, and the inclusion of duration states provides the
necessary flexibility, as shown in Fig. 7d.

A more detailed example is shown in Figs. 7e and 7f,
indicating possible pen trajectories that can be extracted from
Fig. 3b if first-order and second-order HMMs are used and
detaching the simple crossing at State 4 in Fig. 7f. For the sake
of clarity, Figs. 7e and 7f omit the fact that a pen trajectory can
start and end at any sample (numbered circle). Self-loop
symbols are used to indicate duration states in Fig. 7f. It is
interesting to derive the number of first-order and second-
orderHMMstates andnonzero transitionprobabilities for the
signature in Fig. 3b, that allow the choices of possible pen
motions shown in Figs. 7e and 7f:

1. The signature in Fig. 3b has 16 states in its first-order
HMM and 107 states in its final second-order HMM
(including nonemitting states).

2. The signature in Fig. 3b has 92
256 (36 percent) nonzero

transition probabilities in its first-order HMM. This is
reduced to 428

11449 (3.7 percent) in its final HMM. It
should be noted that transition links leaving the
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nonemitting initial state and entering the nonemitting
terminating state are included in this computation.

We can conclude from the above statistics that the final
HMM is notably sparser and has more states than its first-
order counterpart, thereby improving the ability of our pen
trajectory estimation algorithm to model long-term depen-
dencies, as described in Section 3.2.

3.6 HMM PDFs

In the first-orderHMM,eachposition coordinate is associated
with a single state. For simplicity, the PDF associated with
each state has so far only reflected information about the
position variations of the static image. When unraveling a
static image, the direction of penmotion at each coordinate is
also important. Knowledge of pen direction allows us to
match not only position coordinates, but also local directions
in a dynamic exemplar, thus providing additional context.

The PDF of state i that reflects the pen position is given
by Nð����P

i ; �PÞ, where we defined ����P
i ¼ prðiÞ. However, in our

second-order HMM, each state i has a single predecessor
skeleton sample h, enabling the use of a direction feature. A
second Gaussian PDF is associated with each emitting state,
which takes the form of (1) with

����V
i ¼ ����P

i � ph

k����P
i � phk

; ð5Þ

where ����V
i ¼ ð0; 0Þ if state i is preceded by the nonemitting

initial state. The direction PDF is abbreviated as Nð����V
i ; �VÞ.

The two PDFs associated with state i are assumed to be
statistically independent [39]. They reflect the typical corre-
spondences between the coordinates (position and direction
of pen motion) of the static image and dynamic exemplar. It
should be noted that the directional feature described by (5) is

frequently used in first-order HMMs of online character

recognition and signature verification applications, where

each pen position has a unique previous position. In our

application, each coordinate in the skeleton of a static image

hasoneormoreneighborsandwehavenopriorknowledge to

choose appropriately. Second-orderHMMscanmodel longer

dependencies, effectively enforcing a single previous coordi-

nate for each state. Thus, we are able to include an

unambiguous directional feature in each state PDF.

All parameters of the HMM are designed specifically for

our application and are independent of the test set. We now

list the relevant empirically determined values used in our

system (all transition probabilities leaving a state are

normalized to sum to one, of course):

. aEij ¼ 1
ND

: Probability of a transition from endpoint

state i to state j, where ND is the number of links

leaving state i.
. aIij ¼ 1

ND
: Probability of a transition from nonemit-

ting initial state i to state j, where ND is the number

of links leaving state i.
. aCij ¼ 1

ND
: Probability of a transition from crosspoint

state i to state j, where ND is the number of links

leaving state i.
. aSSij ¼ 0:05: Probability of a transition from segment

point state i to its duration state j.
. aSTij ¼ 0:05: Probability of a transition from segment

point state i to the terminating nonemitting state j.
. aSij ¼ cosð�rðhÞrðiÞrðjÞÞ; j�rðhÞrðiÞrðjÞj � 90�: Probability of

any other transition from state i, associated with
segment point rðiÞ (see (4)).
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Fig. 7. (a) Simplified first-order HMM for a crosspoint (excluding nonemitting states, skip-links, and self-loops) with (b) the first-order equivalent of its
second-order counterpart, (c) lines decoupled at the crossing by removing links from (b), and (d) duration states included in (c). (e) Possible pen
trajectories for Fig. 3b using our first-order HMM, and (f) using the second-order HMM with detachment of the intersecting lines at the crosspoint. It
should be noted that graphs (e) and (f) are not intended as HMMs, but as representations of allowed pen trajectories with skeleton samples as nodes
and possible pen motions as arrows.



. �P ¼ 17: Standard deviation (in pixels) quantifying
similarities between pen positions. This constrains
the distance between points in the static image and
dynamic exemplar.

. �VI ¼ 2: Standard deviation that quantifies simila-
rities between local line directions if a state is
preceded by the nonemitting initial state.

. �V ¼ 0:2: A tight standard deviation that quantifies
similarities between local line directions if a state is
preceded by an emitting state.

3.7 The Hidden State Sequence (Estimated Pen
Trajectory)

We have now developed the full HMM from the static
image. It consists of states associated with the position
coordinates of the static image skeleton, and transition
probabilities determining a transition from one state to the
next. Each state has two statistically independent PDFs
associated with it, describing the position and direction
variations. The transition probabilities govern the possible
pen motions, based on two basic assumptions:

1. The pen is not allowed to turn around suddenly
within a line segment.

2. The pen is allowed to turn around at endpoints and
crosspoints.

Most important, when the dynamic exemplar is matched
to the HMM, one can determine the most likely state
sequence. Since the states are associated with the position
coordinates of the skeleton, this sequence yields the
maximum likelihood pen trajectory as determined by the
model. The dynamic exemplar XXXX ¼ ½x1;x2; . . . ;xT � is
matched to the HMM � of the static image using the Viterbi
algorithm [40], [20]. This results in an optimum state
sequence s ¼ ½s1; . . . ; sT � as well as a likelihood.

The first two components of each dynamic feature

vector xt form a subvector x1;2
t describing the dynamic

pen position. The last two components x3;4
t ¼ ðx1;2

t �
x1;2
t�1Þ=kx

1;2
t � x1;2

t�1k are two direction components (normal-

ized velocity), with x3;4
1 ¼ ð0; 0Þ. Let fP

st
ðx1;2

t Þ be the

position PDF Nð����P
st
; �PÞ evaluated at x1;2

t . Likewise, let

fV
st
ðx3;4

t Þ be the direction PDF Nð����V
st
; �VÞ evaluated at x3;4

t .

Since these PDFs are independent, the joint observation

PDF of state st evaluated at feature vector xt is given by

fstðxtÞ ¼ fP
st
ðx1;2

t ÞfV
st
ðx3;4

t Þ, where st 2 f1; . . . ; Ng.
The globally optimized likelihood of s, based on the

HMM and dynamic data XXXX, is then given by

� ¼ aIs0s1

YT
t¼1

aststþ1
fstðxtÞ; ð6Þ

where s0 ¼ 0 is the nonemitting initial state and sTþ1 ¼ N þ 1
is the nonemitting terminating state. We now have a
maximum likelihood state sequence for each available
dynamic exemplar of a static image. This provides a
pointwise correspondence between the static image and
dynamic exemplar.

The likelihood � is a useful similarity measure between a
static image and a dynamic exemplar. It tends to decrease if a
segment exists in the dynamic exemplar and not in the static
image or in case of inconsistencies in size or orientation.
However, it can happen that a dynamic exemplar matches
only a portion of the static image very well. A dynamic

character “1,” for example, canproduce ahigh likelihoodon a
static “7.” To prevent this, we weight the likelihood (6) in the
followingmanner: First, the total path length TL is computed,
as the sum of distances between all the connected skeleton
samples of the static image. Second, the path lengthRL of the
recovered pen trajectory is computed so that RL � TL. We
nowweight each of the maximum likelihood state sequences
(one for each dynamic exemplar) as follows:

�W ¼ RL

TL
�: ð7Þ

Finally, the dynamic exemplar’s state sequence that
produces the maximum weighted likelihood �W is chosen
as the estimated pen trajectory. It should be noted that the
weighted likelihood in (7) can be used to identify forgeries
in a signature verification application.

4 EXPERIMENTS

We showed in the previous section how to recover the pen
trajectory of a static image, by comparing its HMM to a
different dynamic exemplar. In this section, we demonstrate
how the accuracy of this recovered trajectory is measured, by
comparing it to its ground truth. The evaluation technique
that we use is presented in Section 4.1. Experimental results
are given and discussed in Section 4.2.

4.1 Evaluation Protocol

In order to evaluate the accuracy of our method, a ground
truth is needed. We therefore developed a signature
database, named US_SIGBASE, which contains the exact
dynamic sequences of static signature images. Signatures
were recorded from 55 persons (hereafter referred to as
signatories) on paper placed on a WACOM digitizing tablet.
The paper signatures were then scanned as gray-scale
images at 600 dpi. Thus, a static image, with line thickness
varying between five and 10 pixels, and its exact dynamic
counterpart were obtained simultaneously. A second set
was obtained from the Dolfing database [41], which consists
of dynamic signatures of 50 signatories. These signatures
were converted to their static counterparts, with line
thickness varying between one and three pixels. Finally,
we selected only singlepath signatures, as the described
system is not capable of combining disconnected trajectories
(see the discussion in the final section, regarding extensions
to multipath signatures).

Due to the noise introduced while recording a dynamic
signature and while scanning, binarizing, and skeletonizing
its static counterpart, the image skeleton may differ from its
exactdynamic counterpart. Furthermore, there is clearlynot a
one-to-one correspondence between the pen positions of the
dynamic signature and the position coordinates of the
skeletonized static image. The ground-truth pen trajectory is
obtained by matching a slightly modified HMM of the static
image with its exact dynamic counterpart. The slight mod-
ification tightens the standard deviation �P to 7 (measured in
pixels), since the position coordinates of the static image
match that of its exact dynamic counterpart much better than
in situations where only a dynamic exemplar is available.

All that remains is to compare the two state sequen-
ces—the ground truth, as described above and the estimated
sequence obtained from the dynamic exemplar. Both se-
quences are extracted from the same static image and it is

NEL ET AL.: ESTIMATING THE PEN TRAJECTORIES OF STATIC SIGNATURES USING HIDDEN MARKOV MODELS 1741



therefore possible to compare them. However, since the two
sequences are obtained from different dynamic sequences,
they do not necessarily have the same number of samples. A
point-wise comparison is therefore not possible. Thus, we
align the two sequences before comparison using a dynamic
programming (DP) algorithm [40] tominimize the Euclidean
distance between them. This allows for a direct comparison,
from which errors can be identified.

Figs. 8a, 8b 8c, and 8d illustrate the pen trajectory
estimation process. Fig. 8a shows the static image with its
skeleton inFig. 8bandadifferentdynamicexemplar inFig. 8c.
Fig. 8d shows an animation of the match between the static
image (bottom) and a dynamic exemplar (top). The numbers
indicate where curves start and the arrows indicate the
positions of matched coordinates. Dashed lines are previous
curves. The only significant error in the estimated pen
trajectory occurs in the curve starting at 6 in Fig. 8d, which is
traversed the wrong way around. The Euclidean error
distance eðtÞ as a function of time t, for the matched
coordinates, is shown in Fig. 8f. The error, magnified in
Fig. 8e, results in a prominent pulse, originating at approxi-
mately t ¼ 1; 000 in Fig. 8f. The smaller errors are due to the
elasticity built into themodel through skip-link and self-loop
states, which accommodate different curve lengths. In order
to isolate a true error, as indicatedby apulse, amorphological
open-close filter [22] with width w ¼ 10 is applied to eðtÞ,
resulting in eFðtÞ, as shown in Fig. 8g. Erroneous regions are
now identified where eFðtÞ > 0.

An error measure that is invariant to parameterization is
given by the path length of the ground-truth trajectory in

erroneous regions expressed as a percentage of the total
ground-truth path length. Accordingly, the accuracy of the
pen trajectory shown in Fig. 8 is approximately 98 percent
in terms of this measure.

4.2 Experimental Results

Our signature database, as described in the previous section,
consists of a total of 710 singlepath signatures from
50 signatories. The static images of the first 35 signatories
were obtained from the US_SIGBASE database, and the
remaining 15 signatories were obtained from the Dolfing
database. For each signatory, a static image was randomly
selected. It should be noted that the dynamic counterpart that
establishes a ground truth is available for each static image.
The rest of the dynamic signatures are used as dynamic
exemplars for estimating the pen trajectories of the static
images. The pen trajectory of a static image is recovered, as
described in Section 3.7. The estimated pen trajectory is then
compared with the ground truth to obtain an accuracy score
from eFðtÞ, asdescribed inSection4.1. The average accuracyof a
database is then calculated by averaging the accuracy scores
over all the static images.

Theexperimentswere runonanAMDXP1900+at1.6GHz.
The signatures are constrained to a bounding box of
50 mm� 20 mm, which is somewhat larger than what would
normally be allowed on documents such as bank checks. It
takes approximately 16 seconds to construct an HMM for a
skeleton image consisting of 1,600 coordinates, and approxi-
mately 22 seconds to estimate its pen trajectory based on a
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Fig. 8. Evaluating a recovered pen trajectory. (a) A static signature with (b) its skeleton and (c) the dynamic signature best corresponding to it.
(d) Animation of the dynamic exemplar (top) and estimated (bottom) pen trajectories. (e) An error to quantify. (f) The errors eðtÞ and (g) their filtered
versions eFðtÞ.



different dynamic exemplar. We are using generic software
with no optimization for this particular situation. It is
expected that this computation time can be substantially
reduced with code optimized for this application. Other
optimization suggestions are made in the final section.

Two sets of experiments are conducted. The first set uses a
standard thinning algorithm [24] without any removal of
artifacts andyields anaccuracyof 89.3percent. The secondset
uses the more sophisticated skeletonization procedure
described in Section 2.1 and yields an average accuracy of
91.5 percent. These results are summarized in Table 1. The
simple thinning approach achieved a relatively high accu-
racy,which indicates that our approach is nothighly sensitive
to skeletonization artifacts. However, the approximately
20 percent error reduction between experiments 1 and 2
indicates that artifact removal and direction preservation
does improve the procedure.

Fig. 9 shows examples of typical errors that were
encountered. The dynamic exemplars and the skeletonized
static images are shown in Figs. 9a and 9b, respectively. The
errors as functions of t are shown in Fig. 9c, and the
accuracy, as a percentage of the total ground-truth path
length, is shown in Fig. 9d. The exact locations of the errors
in the signatures are indicated by thickened lines in Fig. 9b,
with the corresponding locations in the dynamic exemplars
of Fig. 9a indicated by matching numbered arrows.

As expected, the main cause of errors is inconsistencies
between a static image and a dynamic exemplar. More
specifically, the system is prone to errors in regions where a
line segment is present in either the dynamic exemplar or
static image, but absent in the other. A line segment in the
static image that is absent in thedynamic exemplarwill not be
extracted from the static image. The reason is that the
dynamic exemplar does not provide the necessary informa-
tion (see the arrows numbered 1 in Fig. 9, for signatures 1-3).
In Fig. 9, arrows 2, 3, and 4 for signature 5 show errors caused
by inconsistent pen movements on corresponding segments
of the dynamic exemplar and the static image. This error type
is illustrated in the two attachments. Attachment 1 (available
at http://computer.org/tpami/archives.htm) is an anima-
tion of the extraction of the ground-truth pen trajectory of
signature 5 in Fig. 9. The exact dynamic counterpart of the
static image (top signature, rendered in blue) is used to
estimate its ground truth (bottom signature, rendered in
black). The animated red circles show corresponding
dynamic pen positions. Attachment 2 (available at http://
computer.org/tpami/archives.htm) animates the estimation
process with a different dynamic exemplar, shown in Fig. 9a.
The green segments in the bottom signatures (also shown by
the thick solid lines in Fig. 9b) are erroneous, due to

compensation for dissimilarities. Note the inconsistent pen
movements between the ground truth (bottom signature in
Attachment 1) and dynamic exemplar of Attachment 2 (top),
resulting in the relatively low accuracy score of signature 5.
Extreme size differences between corresponding segments
can also cause errors, e.g., segment 1 of signature 6. The
erroneous segment originating at s is indicated by arrows. It
should be noted, however, how easily the slight shape
dissimilarities between signatures 7a and 7b can be accom-
modated. The estimated pen trajectory is shownwith arrows
in Fig. 9b, resulting in 100 percent accuracy.

Some imagesmayhave an excessive line thickness relative
to the sizeof the signature. In this case, information lossdue to
multiple crossings in small areas becomes severe, making it
difficult or impossible to unravel the image. Figs. 10a, 10b,
and 10c show an example of such a signature (probably the
most complex signature in our database). The original image,
its skeleton, and the dynamic exemplar corresponding best to
it are shown inFigs. 10a, 10b, and10c, respectively.Notonly is
the shape of the image in Fig. 10a corrupted in the middle
region, but the dynamic exemplars have inconsistent pen
movements in corresponding regions. The accuracy of the
pen trajectory, as calculated by our evaluation technique, is
68 percent. Thus, despite the obvious difficulties, a total path
length of almost 70 percent is derived from its dynamic
ground truth.

Finally, Figs. 11a, 11b, and 11c illustrate the effect on our
system when the pen trajectory of a static image is estimated
using an incorrect dynamic exemplar (i.e., one created by a
different signatory). Fig. 11a shows the dynamic exemplar
used to estimate the pen trajectory of the static signature in
Fig. 8a. As expected, the pen trajectory is estimated
incorrectly, and only a small part of the signature is extracted
from its image, as shown in Fig. 11b. The error function eFðtÞ
produced by our evaluation technique is erratic, as shown in
Fig. 11c, and produces an accuracy of 3 percent.

5 CONCLUSION

Our system for estimating the pen trajectories of static
images depends on the availability of dynamic exemplars.
After skeletonization, an HMM is created from the static
image. The necessary context to resolve ambiguities is
provided by a second-order HMM. The Viterbi algorithm
matches a dynamic exemplar to the HMM and determines
the most likely state sequence, which can be translated into
the most likely pen trajectory. Furthermore, the Viterbi
likelihood provides a measure of similarity between a static
image and a dynamic exemplar, which may form a useful
basis for a static signature verification system.

Our experiments compare the ground truths with the
estimated pen trajectories of static images. It is shown that
more than 90 percent of the ground-truth path lengths are
recovered (averaged over all the images). The experiments
also show that the system is rather robust with respect to the
type of skeletonization used.Moreover, we find that complex
static images, even ones that are hard to unravel with the eye,
do not pose serious problems. Of course, some images can be
corrupted during skeletonization to such an extent that
information loss becomes severe, making it very difficult to
unravel the image. The main source of errors is inconsisten-
cies between a dynamic exemplar and a static image,which is
inevitable for handwritten documents. Although our system
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Experimental Results, Showing the Average Accuracy

of Recovered Pen Trajectories



is not immune to dissimilarities and ambiguities, it takes

global context into account, making it more robust than

algorithms that rely heavily on local correspondences. It is

important to note, however, that in those cases where errors

do occur, one still has access to local correspondences. This

can be useful in a signature verification application, as it

allows the comparisonofonly thoseparts of the signature that

were accurately recovered. At present, we are investigating
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Fig. 9. (a) Dynamic exemplars that are used to unravel (b) skeletonized static images, with (c) resulting errors, and (d) the accuracy scores of the
extracted pen trajectories.



HMM training schemes to model inconsistencies between
signatures.

At least twomore issues still need tobeaddressed.The first
relates to the speed of the system. As it stands, without any
optimization, it is slow. A major improvement could
presumably be effected by reducing the number of samples
that constitute the static images and dynamic exemplars. The
Viterbi algorithm is used to estimate the pen trajectory of a
static image. The computational cost of the Viterbi algorithm
is OðTmÞ, where m is the number of nonzero transition
probabilities at each time step [42] and T is the number of
samples in the dynamic exemplar that is matched to the
HMM.There areother approximatebut faster algorithms that
could be used instead (see [42]). The second issue concerns
our assumption of a singlepath static image. This imposes a
severe restriction on the application of the system. Prelimin-
ary experiments with hierarchical HMMs indicate that
multipath static images can be accommodated with com-
parative ease andwe hope to address the topic inmore detail
elsewhere. Unexpected disconnections, i.e., broken curves in
the static image, can also be treated as part of the extension to
multipath signatures.
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